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Abstract : 

 
The definition of a stress tensor in shaken granular materials is difficult because the local properties 
change much in space and time. It is shown that in a stationary regime a definition of a standard form can 
be given at least in the case of a simple geometry (parallelepiped container, infinite along two dimensions, 
no symmetry breaking). In that case the stress is shown to be uniform. The quantities P+ and P- introduced 
by Evesque are found to be relevant to describe the force acting on a heavy test particle. 
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1.  Introduction :  

The problem of interest in this article is defined for instance by Barrat et al. [1] as 
follows: ”A granular gas is typically obtained by enclosing sand or balls made of 
glass, steel, brass, ceramic beads, etc in a container, which is subsequently 
vigorously shaken. The energy injected at the boundaries compensates for the 
dissipative collisions [7], and allows the grains (particles) to follow ballistic 
trajectories between collisions.” The loss of kinetic energy at each collision is 
typically between 10 and 20 % [2]. The attention will be concentrated on a box 
infinite in two directions and shaken in the third direction z (Figure 1). This is 
consistent with the simulations of Herbst et al. [3]. It is assumed that no symmetry 
breaking structure appears, so that a stationary state is created, in which the density, 
the average velocity, the energy density, etc. are only functions of z. In certain cases, 
very complicated patterns have been observed [4], but these cases are excluded here. 

 

2.   The stress tensor   

As pointed out by Evesque [5], the possibility of defining a stress tensor is not clear. 
A standard definition of the stress tensor is to consider the force exerted on a small 
volume element by the remainder of the fluid and write it as the divergence of a 
tensor, the stress tensor. However, in the systems of interest, the density can change 
appreciably in a distance comparable with the interatomic distance, and on such a 
distance the probability that a particle does not meet any other particle is high, so 
that such a particle does not exert any force at all. 
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I shall argue that, in the stationary regime and in the simple geometry of 
Figure 1, it is possible to define a stress tensor in a standard way. 

I shall only consider the zz component of the stress tensor, which will be 
called σzz = P . Traditionally, it is deduced from the force exerted by the particles on 
one side of a plane z = Const on particles on the other side. If the force across an 
area S is F, then 

 
σzz = P = F/S  (1) 

 
The difficulty is that particles are constantly going from one side to the other side. 
The definition (1) must therefore be made more precise. Each particle going from 
side A to side B during time t receives a label i. The component along z of its 
velocity is vi. If  t is long enough, the particle comes back with a velocity whose 
component along z is v′i. The z-component of the force Fi(t) of the force which has 
been acting on it satisfies  
 

∫t1
t 2 

 Fi(t) dt = mi [vi − v′i]  (2) 
 
where t1 and t2 are the times where the particle has crossed the plane. We are only 
interested by events which satisfy 0 < t1 < T. At t2<T the particle loses its label, so 
that if t2<T, (2) can be rewritten as 

 

 
Figure 1: The geometry 

 
 

∫0
T
 Fi(t) dt = mi [vi − v′i]  (3) 

 
If t2 > T, (3) will be accepted too. The relative error is small if T is large.  
It is now natural to define the total force F acting on one side of the plane by 
 

F T = Σi mi [vi − v′i]  (4) 
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where the sum is over all particles which have crossed the plane from side A to side 
B during time T. They do not necessarily come back during time T, but if T is long 
enough one can replace (4) by 
 

F T = Σi mi vi −Σr mr vr  (5) 
 
where r labels particles which have crossed the plane from side B to side A during 
time T. All vi’s have the same sign (the plus sign will be chosen), and the vr’s have 
the opposite sign.  

In the stationary regime, the stress P defined by (1) and (5) is the same 
everywhere. In an usual fluid it is just the condition for mechanical equilibrium. 
Here it may be worth giving a proof, and this is done in Section 5.  

Assuming all particles to have the same mass m, equation (5) can be written 
as 
 

F T = ∫0
+∞

 v n(v) dv  -  ∫-∞
0 
v n(v) dv     (6) 

 
where n(v) is the number of particles whose z-component vz of the velocity is v 
which cross the area S of the plane during time T. Its value is n(v) = S ρ p(v) |v| T 
where ρ(z) is the local density and p(v) is the local probability density that vz = v. 
The function p(v) depends on z as a parameter and, strictly speaking, should better 
be written  p(z; v). It satisfies ∫-∞

+∞ 
p(z; v)dv = 1. Formula (6) may be written as 

 
F T = S T ρ ∫-∞

+∞ 
 v² p(v) dv 

 
so that the stress (1) is 
 

P = ∫-∞
+∞ 

v² p(v) dv = ρ <v²>  (7) 
 
This is the final formula of this section. The particle density ρ and the mean square 
velocity <v²> depend on z. 
 
 
3.   An example: the ideal gas   

Formula (7) is a way to derive the equation of state of an ideal gas. Then, P is the 
pressure, ρ= N/V where N is the number of particles and V is the volume, and p(v)= 
C exp(−βmv²), where β= 1/(kBθ), kB is the Boltzmann constant, θ the temperature, 
and C a constant determined by the condition ∫−∞

+∞
p(z; v) dv = 1. The integration is 

readily performed and (7) yields the well-known formula 
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PV = N kBθ  (8) 
 
 

4.   The Evesque pressure   

Evesque [5] has introduced two quantities P+ and P− which have the dimension of a 
pressure and which, in the geometry of Figure 1, may be defined in analogy with (7) 
as 
 

P− = ρ ∫-∞
0
  v² p(v) dv  (9) 

 
P+ = ρ ∫0

+∞
 v² p(v) dv  (10) 

 
In an ideal gas at equilibrium, both quantities are equal to half the pressure. In 

a shaken sand experiment, these « Evesque pressures » are clearly different; P- is not 
equal to P+. This is related to the strong asymmetry of the velocity distribution 
function p(z; v), at least near the vibrating walls (Figure 2). Evesque calls -P- what 
is called P- here. 

 

   
 
Figure 2: Velocity distribution in different places. Near a vibrating wall, it has two peaks 

(red curve). Taken from ref. [2] 
 

 
The Evesque pressure carries more information than the «standard» stress 

defined by (7). Moreover, it has a physical meaning. Indeed, it characterizes the 
force acting on a very heavy test particle of vanishing or small velocity inserted in 
the gas of other particles. Consider a collision between the test particle of 
momentum P and a light particle of momentum p. After the collision, the momenta 
P' and p' satisfy P'- P= p- p'. The modulus of this quantity is of the order of p. Near 
a vibrating wall, the velocity distribution is strongly asymmetric, with two peaks 
(Figure 2). Near one of the walls, particles with a positive velocity are much faster 
than those with negative velocity. Near the other wall, it is the contrary. On the other 
hand, the number of particles meeting the test particle from the +z direction is the 
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same as the number of particles meeting the test particle from the -z direction. This 
results from the equality. 

 
 

 
Figure 3: Various types of collisions. The z-component of the velocities are denoted v1 and 

v2 (incoming particles), v′1 and v′2 (outgoing particles). 
 

 
Near a vibrating wall, because of the asymmetric velocity distribution, │pz│ 

is, on the average, much larger for the particles which push the particles away from 
the wall than for particles which push it to the wall. On the other hand, the number 
of particles meeting the test particle in the same time is the same for both types of 
particles. This results from the equality 

 
∫-∞

+∞
 v p(v)dv = 0  (11) 

 
valid in the stationary regime because the average velocity is zero everywhere.  
Therefore, the test particle is pushed away from the walls. A detailed argument 
(which will not be presented here) suggests indeed that is undergoes a force 

 
F= ϖ [P+ - P-] (12) 

 
Where ϖ has the dimension and the order of magnitude of the cross section of the 
test particle (i.e. π r² for a spherical particle of radius r). Its precise form depends on 
details, such as the degree of elasticity of collisions). Formula (12) holds if the 
velocity of the test particle is small with respect to that of the other particles. 



J.Villain/ Shaken sand, stress and test particles - 34 - 

poudres & grains 20, 29-36 (Juillet 2012) 

Quantities P+ and P- can be determined numerically or experimentally [2], and it is 
clear that the force (12) is directed towards the middle of the container. Thus, 
formula (12) suggests that in the stationary regime, heavy particles are confined in 
the central part of the container. 

Evesque [5] has suggested the same effect for big particles. However, a more 
precise analysis may be necessary because such particles modify the density in their 
neighbourhood. For instance a big particle near a vibrating wall projects a shadow 
on the wall, which does not receive particles and therefore does not reflect them. 
Therefore a big particle near a vibrating wall might be projected against the wall by 
particles coming from the opposite side. 

One can also consider the case when the « test particle » is identical to the 
other particles. Then, after a few collisions, the average force acting on it is the same 
as that acting on the other particles which is 0. Indeed, the average position < z > of 
all particles is the same, time-independent quantity (equal to 0 if the container is 
centred at z = 0). Therefore the average acceleration < d²z/dt² > vanishes and the 
average force too. Of course, as well-known, the average velocity vanishes too, this 
is formula (11). 

We now come back to the “standard” stress. It has a fundamental property 
which makes it useful: it is uniform in the stationary regime, as will now be shown. 
 

 
5.   Uniformity of the stress  

This section, as the preceding ones, is devoted to the shaken box of Figure 1, infinite 
in two directions, in the stationary regime. It may look intuitive that stationarity 
implies mechanical equilibrium and therefore uniformity of the stress. However, in 
view of the permanent exchange of particles between the various parts of the 
system, a detailed derivation is useful. 

Let z1 and z2 be the positions of two planes in the box. We want to show that 
the stresses P(z1) and P(z2) defined above are equal. 

Any possible difference between P(z1) and P(z2) would be a result of 
collisions between particles between z1 and z2. These heights will be assumed nearly 
equal, so that multiple collisions are excluded. For instance a particle 1 with velocity 
v1 > 0 can collide with a particle 2 with velocity v2 < 0. After the collision, the 
particles have velocities v′1 and v′2 which satisfy momentum conservation, namely 

 
 v1+v2 = v’1+v’2 (13) 

 
Four cases are possible (Figure 2), namely 

A.  After the collision, v’1 < 0 and v’2 > 0 
B.  After the collision, v’1 > 0 and v’2 < 0 
C.  After the collision, v’1 < 0 and v’2 < 0 
C’.  After the collision, v’1 > 0 and v’2 > 0 
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In case A, the contribution δF1T of particles 1 and 2 to (5) is m1(v1 − v’1) at 
height z1 and the contribution δF2T of the same particles at height z1 is m2(v2 ‒ v’2). 
Both contributions are equal according to (13). Expressions of δF1T and δF2T in 
cases B and C are shown in table 1 and are also equal according to (13). Case C’ is 
clearly analogous to case C.  

A collision between two particles with both positive velocities v1 and v2 is 
also possible. Two possibilities D an E are to be considered (Figure 2). In both 
cases, the contributions δF1T and δF2T are given in table 1 and found to be equal 
according to (13). This demonstrates that the stress is uniform in the stationary 
regime and in the geometry of Figure 1. 
 

process A B C D E 

Cont. to F1T 
Cont. to F2T 

m1(v1-v’1) 
m2(v2-v’2) 

m1v1 - m2 v’2 
m1v’1 - m2 v2 

m1v1-m1v’1- m2 v’2 
-m2v2 

m1v1 +m2 v2 
m1v’1 + m2 v’2 

m1v1+ m2v2 - m2 v’2 
m1v’1 

Table 1: Contributions to F1T and F2T 
 

 
6.   Dynamics and other extensions  

Can the concept of stress be used in a situation which is not stationary? This is 
questionable. In usual hydrodynamics, matter is assumed to be in local equilibrium. 
This means that in a sufficiently small volume the density, the energy density, etc. 
are approximately uniform in space and time. In shaken sand this is hardly possible: 
if the density is uniform, the volume should be so small that strong fluctuations in 
time are expected. The time-dependent behaviour might require solving the 
Boltzmann equation without any possible simplification. For instance it does not 
seem possible to write a Navier-Stokes equation. 

In contrast with the standard stress or pressure the « Evesque pressures » P+ 
and P− can clearly be useful in a time-dependent situation. For instance formula (12) 
describes the force acting at a given time on a test particle while (2) does not, since 
particle i may have a long history between incoming with velocity v1 and outgoing 
with velocity v2. 

Even in the stationary case, the definition of a stress tensor is not straight 
forward if the container has not the simple shape of Figure 1. The case of an 
hourglass [5], where the flow is nearly interrupted by shaking, is particularly 
appealing. The problem is presumably not extremely difficult; it is left for further 
research by other researchers. 

 
 

7.   Conclusion 
 
The present work was largely motivated by Pierre Evesque's work, criticizing the 
very concept of pressure and stress tensor in shaken sand and advocating the use of 
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asymmetric quantities P+ and P-. I have shown, in a simple case, that the concept of 
stress tensor can be used in a stationary regime, but is otherwise questionable. On 
the other hand, Evesque's `pressures' P+ and P- are physically meaningful quantities 
which can be used in any circumstance, even not stationary. I hope everybody will 
be happy with this diplomatic conclusion. 
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